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Ideal liquid and ideal crystal

Crystal lattice is periodic and anisotropic:

𝑅! = 𝑛"𝑎⃗" + 𝑛#𝑎⃗# + 𝑛$𝑎⃗$

Fluids are homogeneous and isotropic:

𝑃 𝑟 =const

Crystal Fluid
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Real liquid and real crystal

In real crystals atoms might be 
displaced due to defects:

𝑅! = 𝑛"𝑎⃗" + 𝑛#𝑎⃗# + 𝑛$𝑎⃗$ + 𝑢!

Real liquids have local order:

Sparce crystal Dense liquid
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Correlation function

𝑛 𝑟  is useful in crystals:

The structure of the material (positions of each atom) can be described by the number density:

𝑛 𝑟 =*
%

𝛿 𝑟 − 𝑟%

𝑥

Here …  denotes statistical averaging, i.e. time-averaging or ensemble-averaging (ergodicity) 

𝑛 𝑟  is not very useful in 
liquids:

𝑛(
𝑥)

𝑛(
𝑥)

𝑥

crystal
𝑛(
𝑥)

𝑥

liquid
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Correlation function
To get more general and meaningful information, one has to compute density-density 
correlation function:

𝐺 𝑟", 𝑟# =
1
𝑁 𝑛 𝑟" 𝑛 𝑟# =

1
𝑁 *

%%&

𝛿 𝑟" − 𝑟% 𝛿 𝑟# − 𝑟%&

Here …  denotes statistical averaging, i.e. time-averaging or ensemble-averaging (ergodicity) 
If the system is translationally invariant, i.e. the correlation function depends only on 
𝑟 = 𝑟# − 𝑟" , the correlation function can be simplified:

𝐺 𝑟 =
1
𝑁 𝑛 𝑅 𝑛 𝑅 + 𝑟 =

1
𝑁 *

%%&

𝛿 𝑅 − 𝑟% 𝛿 𝑅 + 𝑟 − 𝑟%& =

=
1
𝑁
5 *

%%&

𝛿 𝑅 − 𝑟% 𝛿 𝑅 + 𝑟 − 𝑟%& 𝑑𝑅 =

=
1
𝑁 *

%%&

5𝛿 𝑅 − 𝑟% 𝛿 𝑅 + 𝑟 − 𝑟%& 𝑑𝑅 =

=
1
𝑁 *

%%&

𝛿 𝑟 − 𝑟%& − 𝑟%
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Correlation function is always useful

𝐺 𝑟  is useful in crystals:

𝐺(
𝑥)

𝑥

crystal

𝐺
(𝑥

)

𝑥

liquid
𝐺 𝑟  is useful in liquids:
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Structure factor
General equation for the scattered amplitude: 𝐸 ∝*

'

𝑓' 𝑞 ; 𝑒(')+⃗!

General equation for the scattered intensity:

𝐼 ∝ 𝐸 # ∝ *
',"

-

𝑓 𝑞 ; 𝑒(')+⃗!
#

= 𝑓(𝑞) # *
',/,"

-

exp −𝑖𝑞⃗ 𝑟' − 𝑟/

= 𝑓(𝑞) # ;*
',"

-

𝑒(')+⃗! ;*
/,"

-

𝑒0')+⃗"

= 𝑓(𝑞) # 𝑁 + *
',/,"
'1/

-

exp −𝑖𝑞⃗ 𝑟' − 𝑟/

𝐼 ∝ 𝑁 ; 𝑓 𝑞 # ; 1 +
1
𝑁 *

',/,"
'1/

-

exp −𝑖𝑞⃗ 𝑟' − 𝑟/

structure factor 𝑆 𝑞⃗

= 𝑁 ; 𝑓 𝑞 #; 𝑆 𝑞⃗
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Correlation function and scattering
𝑆 𝑞⃗ =

1
𝑁
*
%%&

𝑒(') +⃗#(+⃗#$

𝑛 𝑞⃗ = 5𝑒(')+⃗𝑛 𝑟 𝑑𝑟 =*
%

𝑒(')+⃗#

𝑛 𝑟" 𝑛 𝑟# = *
%%&

𝛿 𝑟" − 𝑟% 𝛿 𝑟# − 𝑟%&

where

Alternatively, 

𝑆 𝑞⃗ =
1
𝑁5𝑒

(') +⃗%(+⃗& 𝑛 𝑟" 𝑛 𝑟# 𝑑𝑟" 𝑑𝑟# = 5𝑒(') +⃗%(+⃗& 𝐺 𝑟", 𝑟# 𝑑𝑟" 𝑑𝑟#

𝑆 𝑞⃗ =
1
𝑁
5𝑒(')+⃗ 𝑛 𝑅 𝑛 𝑅 + 𝑟 𝑑𝑟 𝑑𝑅 = 5𝑒(')+⃗𝐺(𝑟)𝑑𝑟

Thus, in scattering, we measure the Fourier transform of the correlation function
under the assumptions from lecture #2: a) Single-scattering (kinematical theory, 
           valid for not too perfect crystals)
      b) Far-field regime (Fraunhofer diffraction, 𝐿 ≫ 𝑑#/𝜆, 

          always valid for x-rays, because 𝑑~𝜆~1Å)

=
1
𝑁5𝑒

(') +⃗%(+⃗& 𝑛 𝑟" 𝑛 𝑟# 𝑑𝑟" 𝑑𝑟# =
1
𝑁 𝑛 𝑞⃗ 𝑛 −𝑞⃗

(here 𝑟 = 𝑟" − 𝑟#)
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Ideal crystal

In a crystal, we are sure that we will find an 
atom at the separation
𝑅! = 𝑛"𝑎⃗" + 𝑛#𝑎⃗# + 𝑛$𝑎⃗$ 

from a given atom, even if 𝑅! ≫ 𝑎. This type 
of order is called long-range order (LRO). In 
LRO, the correlation function 𝐺 𝑟  is 
approaching non-zero limit at large distances.  

𝐺(
𝑥)

𝑥
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Ideal crystal + random displacements

Even if the atoms are randomly displaced 
from the equilibrium positions, i.e.

𝑟! = 𝑅! + 𝑢! = 𝑛"𝑎⃗" + 𝑛#𝑎⃗# + 𝑛$𝑎⃗$ + 𝑢!

The long-range order is not destroyed. The 
correlation function 𝐺 𝑟  is approaching 
non-zero constant value at large distances. 

𝐺(
𝑥)

𝑥
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Short-range order

In liquids, the correlation function 𝐺(𝑟) decays 
exponentially at large distances, i.e.

𝐺 𝑟 ∝ exp −
𝑟
𝜉 .

This is considered as a fast decay, which can be 
described by a correlation length 𝜉. Such an 
order is called short-range order (SRO)

𝐺
(𝑥
)

𝑥

Short-range order can be observed if atoms 
have no fixed equilibrium positions, but placed 
relative to each other at some distance 𝑎, which 
can be randomly changed (see example 2):

𝑟! = 𝑟!(" + 𝑎⃗ + 𝑢
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Difference between liquids and crystals

𝐺(
𝑥)

𝑥

LRO
In a crystal, we are still sure that we will find 
an atom at the separation 𝑅! = 𝑛"𝑎⃗" +
𝑛#𝑎⃗# + 𝑛$𝑎⃗$ from the given one, even if 
𝑅! ≫ 𝑎. This type of order is called long-

range order. In LRO, the correlation function 
𝐺 𝑟  is approaching non-zero limit at large 
distances.  

In quasi-long-range order (crystal with certain 
defects), it slowly decays (algebraically): 
𝐺 𝑟 ∝ 𝑟 (2

In short- range order (a liquid or amorphous 
solid), it exponentially decays with a 
characteristic length 𝜉: 𝐺 𝑟 ∝ exp − ⁄+ 3

𝐺(
𝑥)

𝑥

QLRO

∝ 𝑟 (2

𝐺
(𝑥

)

𝑥

SRO∝ 𝑒( 4+ 3

Important is, how the correlation function 
behaves at large distances ( 𝑟 → ∞) 
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de	Jeu	et	al.,	Rev.	Mod.	Phys.	75,	181	(2003)

In a crystal, we are still sure that we will find 
an atom at the separation 𝑅! = 𝑛"𝑎⃗" +
𝑛#𝑎⃗# + 𝑛$𝑎⃗$ from the given one, even if 
𝑅! ≫ 𝑎. This type of order is called long-

range order. In LRO, the correlation function 
𝐺 𝑟  is approaching non-zero limit at large 
distances.  

In quasi-long-range order (crystal with certain 
defects), it slowly decays (algebraically): 
𝐺 𝑟 ∝ 𝑟 (2

In short- range order (a liquid or amorphous 
solid), it exponentially decays with a 
characteristic length 𝜉: 𝐺 𝑟 ∝ exp − ⁄+ 3

Important is, how the correlation function 
behaves at large distances ( 𝑟 → ∞) 

Difference between liquids and crystals
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Examples of 1D long- and short-range order
Example	1:	scattering	from	a	1D	crystal	with	random	displacements.
Consider	a	1D	crystal,	in	which	positions	of	atoms	are	defined	as	

𝑋! = 𝑛 ; 𝑎 + 𝑢!,
where	𝑎	is	a	lattice	parameter,	𝑛 = 1…𝑁	enumerates	atoms	(𝑁 ≫ 1),	and	𝑢!	is	a	
displacement	of	the	nth	atom	from	its	equilibrium	position.	Let	𝑢!	be	a	gaussian	variable	
with	zero	mean	and	a	variance	 𝑢!# = 𝜎#.	Calculate	the	density-density	correlation	
function	𝐺(𝑥)	and	the	structure	factor	𝑆(𝑞).

Example	2:	scattering	from	a	1D	liquid	with	short-range	order .
Consider	a	1D	crystal,	in	which	positions	of	atoms	are	defined	recurrently	as	

𝑋! = 𝑋!(" + 𝑎!,
where	𝑎!	is	a	lattice	parameter,	𝑛 = −∞…+∞ enumerates atoms. Let 𝑎! be a gaussian 
variable with the mean 𝑎 and a variance 𝑎! − 𝑎 # = 𝜎#.	Calculate	the	density-density	
correlation	function	𝐺(𝑥)	and	the	structure	factor	𝑆(𝑞).
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Scattering	from	a	1D	crystal
Example #1.
Consider a 1D crystal, in which positions of atoms are defined as 

𝑋! = 𝑛 ; 𝑎 + 𝑢!,
where 𝑎 is a lattice parameter, 𝑛 = 1…𝑁 enumerates atoms (𝑁 ≫ 1), and 𝑢! is a 
displacement of the nth atom from its equilibrium position. Let 𝑢! be a gaussian variable with 
zero mean and a variance 𝑢!# = 𝜎#.
1. Calculate the density-density correlation function 𝐺(𝑥)
2. Calculate the structure factor 𝑆(𝑞)

𝑥

𝑛(
𝑥)

𝑃 𝑢 =
1
2𝜋𝜎#

𝑒(
5&
#6&
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Solution #1
For an ideal crystal:

𝑆 𝑞 =
1
𝑁*
!,7

-

𝑒(') 8'(8(

For a crystal with displacements:

𝑆 𝑞 =
1
𝑁 *

!,7

-

𝑒(') 8'05'(8((5( =
1
𝑁*
!,7

-

𝑒(') 8'(8( 𝑒(') 5'(5(

𝑒(') 5'(5( = 5
(9

09

𝑒(') 5'(5( ; 𝑃 𝑢! − 𝑢7 𝑑 𝑢! − 𝑢7

𝑃 𝑢! − 𝑢7 =
1
4𝜋𝜎#

exp −
𝑢! − 𝑢7 #

4𝜎#

𝑒(') 5'(5( = 5
(9

09

𝑒('): ;
1
4𝜋𝜎#

exp −
𝑧#

4𝜎# 𝑑𝑧 = 𝑒()&6&

=
1
𝑁*
!,7

-

𝑒('); !(7
-≫"

𝑁*
=

𝛿 𝑞 −
2𝜋
𝑎 ℎ

-≫"
𝑁𝑒()&6&*

=

𝛿 𝑞 −
2𝜋
𝑎 ℎ
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Solution #1
• Deviations of the atoms from the crystal sites do not destroy the long-range order.
• We see sharp Bragg peaks at 𝑞 = #>

;
𝑛 with a full width at half maxima (FWHM) of ≈ #>

;-
 and 

magnitude of ≈ 𝑒()&6&𝑁.

𝐺
𝑥

0

⁄1 4𝜋𝜎!

𝑎 2𝑎 3𝑎 4𝑎
𝑥

0
S
𝑥
/𝑁

0

1

𝑞

0 2𝜋
𝑎

4𝜋
𝑎

6𝜋
𝑎

8𝜋
𝑎
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Scattering from a 1D liquid
Example #2.
Consider a 1D liquid, in which positions of atoms are defined as 

𝑋? = 0,
𝑋" = 𝑋@ + 𝑎",

…
𝑋! = 𝑋!(" + 𝑎!,

where 𝑎! is a lattice parameter, 𝑛 = −∞…+∞ enumerates atoms. Let 𝑎! be a gaussian 
variable with the mean 𝑎 and a variance 𝑎! − 𝑎 # = 𝜎#.
1. Calculate the density-density correlation function 𝐺(𝑥)
2. Calculate the structure factor 𝑆(𝑞)

𝑛 = 0 𝑛 = 1
𝑛 = 2

𝑛 = −1
𝑛 = −2

𝑎" 𝑎#𝑎?𝑎("

…
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Solution #2

𝐺 𝑥 =
1
𝑁 *

!%!&

𝛿 𝑥 − 𝑋!& − 𝑋!% =
1
𝑁 *

!&

*
!%

𝛿 𝑥 − 𝑋!& − 𝑋!%

We will do the same type of calculations

The separation 𝑋! between two atoms is a 
random variable, which is equal to the sum 
of 𝑛  Gaussian variables. 

0

𝑎!𝑎"

…

1 𝑛𝑛 − 1

𝑋! =*
"

!

𝑎'

From statistics it is known, that	𝑋! is also 
a Gaussian variable with the mean 𝑎𝑛 
and variance 𝑋! − 𝑎𝑛 # = 𝑛 𝜎#

=
1
𝑁 𝑁*

!&

𝛿 𝑥 − 𝑋!& − 𝑋? = *
!

𝛿 𝑥 − 𝑋!
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Solution #2
𝐺 𝑥 = *

!

𝛿 𝑥 − 𝑋! =*
!

𝛿 𝑥 − 𝑋! =

=*
!

1
2𝜋𝑛𝜎#

𝑒
( 8(;! &

# ! 6&

~𝜎

~𝜎 2
~𝜎 3

~2𝜎𝐺
𝑥

0

⁄1 2𝜋𝜎!

𝑎 2𝑎 3𝑎 4𝑎
𝑥

0

*
!

5𝛿 𝑥 − 𝑋!
1

2𝜋𝑛𝜎#
𝑒
( A'(;! &

# ! 6& 𝑑𝑋!
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Solution #2
𝑆 𝑞 = 5𝑒(')8𝐺 𝑥 𝑑𝑥

5
(9

09

𝑒(')8𝑒
( 8(;! &

# ! 6& 𝑑𝑥

Change of variable: 𝑥 − 𝑎𝑛 = 𝑧; 𝑑𝑥 = 𝑑𝑧

Hint: 5
(9

09

cos 𝑏𝑥	𝑒(B8&𝑑𝑥 =
𝜋
𝛽 𝑒

(C
&

DB

= 𝑒(');! 2𝜋𝑛𝜎#𝑒(
)&6& !

D

𝑆 𝑞 =*
!

1
2𝜋𝑛𝜎#

𝑒(');! 2𝜋𝑛𝜎#𝑒(
)&6& !

D

=*
!

1
2𝜋𝑛𝜎#

5𝑒(')8𝑒
( 8(;! &

# ! 6& 𝑑𝑥

= 𝑒(');! 5
(9

09

𝑒('):𝑒
( :&
# ! 6&𝑑𝑧 = 𝑒(');! 5

(9

09

cos 𝑞𝑧 𝑒
( :&
# ! 6&𝑑𝑧

=*
(9

09

exp −𝑖𝑞𝑎𝑛 −
𝑞#𝜎# 𝑛

4
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Solution #2
𝑆 𝑞 =*

(9

09

exp −𝑖𝑞𝑎𝑛 −
𝑞#𝜎# 𝑛

4 =

= *
!,?

!,9

𝑒');!(
)&6&!
D 	 + *

!,?

!,09

𝑒(');!(
)&6&!
D 	 − 1

= *
!,?

!,9

𝑒');(
)&6&
D

!

	 + *
!,?

!,09

𝑒(');(
)&6&
D

!

	 − 1

*
!,?

!,9

𝑒');(
)&6&
D

!

=
1

1 − 𝑒');(
)&6&
D

*
!,?

!,9

𝑒(');(
)&6&
D

!

=
1

1 − 𝑒(');(
)&6&
D

*
!,(9

!,?

𝑒(');!(
)&6& !

D + *
!,?

!,09

𝑒(');!(
)&6& !

D − 1
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Solution #2
𝑆 𝑞 =

1

1 − 𝑒');(
)&6&
D

+
1

1 − 𝑒(');(
)&6&
D

− 1 =

=
1 − 𝑒(');(

)&6&
D + 1 − 𝑒');(

)&6&
D − 1 − 𝑒');(

)&6&
D 1 − 𝑒(');(

)&6&
D

1 − 𝑒');(
)&6&
D 1 − 𝑒(');(

)&6&
D

=

=
1 − 𝑒(');(

)&6&
D + 1 − 𝑒');(

)&6&
D − 1 + 𝑒(');(

)&6&
D + 𝑒(');(

)&6&
D − 𝑒(

)&6&
#

1 − 𝑒(');(
)&6&
D − 𝑒(');(

)&6&
D + 𝑒(

)&6&
#

=

=
1 − 𝑒(

)&6&
#

1 − 𝑒(
)&6&
D 𝑒('); + 𝑒'); + 𝑒(

)&6&
#

=

=
1 − 𝑒(

)&6&
#

1 − 2𝑒(
)&6&
D cos 𝑞𝑎 + 𝑒(

)&6&
#
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Solution #2
𝑆(𝑞) =

1 − 𝑒(
)&6&
#

1 − 2𝑒(
)&6&
D cos 𝑞𝑎 + 𝑒(

)&6&
#

• Peaks at cos 𝑞𝑎 = 1 , i.e. 𝑞! =
#>
;
𝑛 

• 𝑆 𝑞! = "(E)
*&+&
&

"(#E)
*&+&
, 0E)

*&+&
&
= "(E)

*&+&
&

"(E)
*&+&
,

& =
"0E)

*&+&
,

"(E)
*&+&
,
= coth )'&6&

F

• In the vicinity of peaks, 𝑆 𝑞! ∝ "
G'&0 )()' & - Lorentzian profile with 𝛾! =

;
)'&6&
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Solution #2

𝐺(𝑥) =*
!

1
2𝜋𝑛𝜎#

𝑒
( 8(;! &

# ! 6& 𝑆(𝑞) =
1 − 𝑒(

)&6&
#

1 − 2𝑒(
)&6&
D cos 𝑞𝑎 + 𝑒(

)&6&
#

𝐺
𝑥

0 𝑎 2𝑎 3𝑎 4𝑎
𝑥

S
𝑥

𝑞

0 2𝜋
𝑎

4𝜋
𝑎

6𝜋
𝑎

8𝜋
𝑎



2626Ivan Zaluzhnyy | WiSe 2024/25 | PHY-VFATCM

Diffuse scattering
In	a	more	general	case,	the	displacements	can	be	different	for	different	atoms	(for	
example,	in	the	case	of	phonons):

𝑟! = 𝑅! + 𝑢 𝑟! = 𝑛"𝑎⃗" + 𝑛#𝑎⃗# + 𝑛$𝑎⃗$ + 𝑢 𝑟! .

Longitudinal phonon in a crystal Corresponding displacement
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Diffuse scattering
𝑆(𝒒) =

1
𝑁 *

!,7

-

𝑒('𝒒 𝒙'0𝒖'(𝒙((𝒖𝒎

𝑒!"𝒒 𝒖'!𝒖( ≈ 𝑒!
%
& 𝒒𝒖' )

𝑒!
%
& 𝒒𝒖( )

𝑒 𝒒𝒖' 𝒒𝒖(

𝑒(':
:≈?

𝑒(
"
# :

&

≈ 𝑒(#L* 1 + 𝒒𝒖𝒏 𝒒𝒖𝒎

=
1
𝑁*
!,7

-

𝑒('𝒒 𝒙'(𝒙( 𝑒('𝒒 𝒖'(𝒖(

(the Baker-Hausdorff theorem)

0th order 1st order
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Diffuse scattering
𝑆 𝒒 =

1
𝑁*
!,7

𝑒('𝒒 +'(𝒓( = 𝑆? 𝒒 + 𝑆" 𝒒 +⋯

𝑆? 𝒒 = 𝑒(#L*
1
𝑁*
!,7

𝑒('𝒒 𝒓'(𝒓( =0th-order	elastic	scattering

1st-order	elastic	diffuse	
scattering

𝑆" 𝒒 = 𝑒(#L*
1
𝑁*
!,7

𝑒('𝒒 𝑹'(𝑹( 𝒒𝒖(𝑹!) ; 𝒒𝒖(𝑹7)

Debye-Waller	factor 𝑊) =
1
2 𝒒𝒖 #

𝑒(#L*𝑁*
𝑮

𝛿 𝒒 − 𝑮

= 𝑒(#L*𝑁 𝒒𝒖𝒒
𝟐

𝑢𝒒 =
1
𝑉
5𝑢(𝒓)𝑒('𝒒𝒓𝑑𝒓Fourier	transform	of	the	

displacement	field
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Thermal diffuse scattering
1st-order	elastic	thermal	diffuse	scattering

𝑆"(𝒒) = 𝑒(#L*𝑁 𝒒𝒖𝒒
𝟐 ∝ 𝑒(#L* 𝑞# 𝑘C𝑇

𝑚𝑐# 𝐺 − 𝑞 #

2𝜋
𝑎

4𝜋
𝑎

6𝜋
𝑎

𝑞

𝑆(𝑞)
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Thermal diffuse scattering

Y.	Ding	et	al.,	Appl.	Phys.	Lett. 88,	061903	(1999)

X-ray	thermal	diffuse	scattering	from	vanadium
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Thermal diffuse scattering

Thermal	diffuse	scattering	(TDS)	from	Si.	
The	data	were	collected	in	a	transmission	
geometry	(photon	energy	28	keV)	using	an	
image	plate	detector.	The	data	were	
collected	on	the	UNI-CAT	beamline	at	the	
Advanced	Photon	Source	in	an	exposure	
time	of	∼10	s.	The	top	and	bottom	left	
panels	show	the	data	taken	with	a	(111)	
and	a	(100)	axis	parallel	to	the	incident
beam	respectively.	The	data	are	plotted	on	
a	logarithmic	scale.	

experiment simulation

M.	Holt	et	al.,	Phys.	Rev.	Lett. 83,	3317	(1999)
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Thermal diffuse scattering

M.	Holt	et	al.,	Phys.	Rev.	Lett. 83,	3317	(1999)

Phonon dispersion curves of Si. Open and closed circles are
neutron scattering data from Solid curves are derived from
a best fit to the x-ray scattering intensity patterns.
Dotted curves are obtained from an independent fit to
the neutron data using the same lattice dynamics model and can
be regarded as an interpolation of the neutron data.

𝑆" 𝒒 ∝ 𝑒(#L**
S,"

T
𝒒𝒆S #

𝜔S
coth

ℏωU
2kVT
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What to remember
• The structure of the material can be conveniently described by density-density correlation 

function

𝐺 𝑟", 𝑟# = 𝑛 𝑟" 𝑛 𝑟# = *
%%&

𝛿 𝑟" − 𝑟% 𝛿 𝑟# − 𝑟%&

• The diffraction can be described by the structure factor

𝑆 𝑞⃗ =
1
𝑁
*
%%&

𝑒(') +⃗#(+⃗#$ = 5𝑒(')+⃗𝐺(𝑟)𝑑𝑟

• Diffraction is sensitive to the mutual distances between the atoms, not to their absolute 
positions, therefore diffraction can directly probe the correlation function

• The long-range order corresponds to a slow (algebraic) decay of the correlation function. 
The short-range order corresponds to a fast (exponential) decay of the correlation function.


